Powering of Detector Systems

Satish Dhawan, Yale University Richard Sumner, CMCAMAC LLC

AWLC 2014, Fermilab May 12 - 16, 2014 Agenda Prior / Current Status LDO Powering Efficiency Buck Converter Frequency limited by FeCo Commercial Devices limited by 200 KHz – 4 MHz - Core losses

Higher Frequency > smaller components

Wireless Charging, Intel 4th Generation Core Air Core Toroid vs Planar (spirals). PC Traces @ > 100 MHz Shielding Electrostatic & RF

ATLAS Tracker

Future

Power Efficiency _ Inefficiency _ Wasted Power

Power delivery Efficiency = 30 %

with Power for Heat Removal = 20 %

Synchronous Rectification

Plug In Card with Shielded Buck Inductor

Noise Tests Done: sLHC SiT prototype, 20 µm AL Shield

Foil

19.4

17

MAX8654 with embedded coils (#12), external coils (#17) or Renco Solenoid (#2) Vout=2.5 V

→ MAX #12, Vin = 11.9 V → MAX #17, Vin = 11.8 V → MAX #2, Vin = 12.0 V

Test Silicon Strip Detector

Top View

Why do we need electrostatic Shield ?										
Parallel Plate Capacitance in pF $= 0.225 \text{ x A x K}$ / Distance										
	Inches	C in femto farade	6							
Area =	1									
Distance =	0.4	500								
GLAST = .5 x 1.3	0.6									
per strip= 0.6 /48	0.0125	6.25								
1	volt swing on spira	al coil will inject Q=	6 femto Coulombs							
Charge from one mir	nimum ionizing pa	rticle (1 mip) =	7 femto Coulombs							

Measurement of RF field (by eddy current loss) vs distance

Measure IC current vs distance between spiral & copper tape Put finger pressure between copper tape and PCB

Yale University January 2, 2014

Eddy Current Loss vs Distance between Spiral to Copper Tape

Current in mA Distance in mils

Diagram 1: Eddy Current Field Depth of Penetration & Density

Skin effect arises when the Eddy Currents flowing in the test object at any depth produce magnetic fields which oppose the primary field, thus reducing the net magnetic flux and causing a decrease in current flow as the depth increases.

Alternatively, Eddy Currents near the surface can be viewed as shielding the coil's magnetic field, thereby weakening the magnetic field at greater depths and reducing induced currents.

Eddy Current is used in the inspection of ferromagnetic and non-ferromagnetic materials. The principle of Eddy Current based inspection is explained below.

Wireless Power Groups

- Automobile Charging
- Cell phone Mats 3 Groups. Each has > 50 companies involved
- Wireless Kitchen ISM Band 6.78 MHz & multiples. GaN

Intel 4th Generation Core Processor: June 2013

- Input = 1.8V
- Maximum Current = 700 Amps
- Output ~ 1 V Multiple Domains up to 16 Phases
- Turn output On when needed
- Inductors on Die / on Package
- Efficiency = 90%

TABLE I.

COMPARISON OF FIVR TO PREVIOUSLY REPORTED INTEGRATED VOLTAGE REGULATORS

Parameter	G. Schrom et al., 2010 [2]	T. DiBene et al., 2010 [3]	N. Sturcken et al., 2012 [4]	This Work	
Process node	130 nm	90 nm	45 nm	22 nm	
Switching Frequency	60 MHz	100 MHz	80 MHz	140 MHz	
Unity Gain Freq	5 MHz	Not Published Not Published		80MHz	
Efficiency	85-88%, 3.3V:1.0V	76%	83%, 1.5V:1.0V	90%, 1.7V:1.05V	
Total Output Imax capability	50 A	Limited by first stage and thermals (Up to 400 A)	1.2 A	Limited by first stage and thermals (Up to 700 A)	
Imax/VR die area	1.3 A/mm ²	8 A/mm ²	1.7 A/mm ²	31 A/mm ²	
Voltage rail count	4	20	1	8 to 31	
Phase count	16	320	4	49 to 360	
Integration level	MCM ^a	MCM ^a	Integrated into network die	Integrated into CPU die	
Inductor technology	Package trace, & magnetic discrete	Magnetic thin-film on VR die	Discrete wire-wound air core	2D array of package trace	
Capacitor type	Ceramic package caps	Ceramic package caps	Die Cap	Die Cap - MIM	
Cout per Max Amp	2000 nF/A	not published	15 nF/A	7 nF/A	

a MCM - Multi Chip Module - the active circuitry is on a separate die assembled on the same package

Mac Pro Air !!!

ATLAS DC-DC Powered Stave

STV10 DC-DC Convertor From CERN group Based on commercial LT chip 10V in, 2.6V out, up to 5A

Peter W Phillips STFC RAL 14/11/11

Last Proposal to DoE to develop Inductors

Planar Coil - "Up Close and Personal"

Double Trigger Noise (DTN)

With Toroid Converter

Reference measurement (CERN STV10 converter) @ 0.5fC

 CERN converter registers zero occupancy until 0.5fC, then registers 528/244 hits
 Above picture is Double trigger noise

Above picture is Double trigger noise i.e. after a hit ; spurious counts are registered

Comments inserted by Yale University

Noise in Electrons Measured @ Liverpool

cern stv10 noise 589, 604 average = 601 yale planar noise 587, 589 average = 588 noise with dc supplies (no dcdc) = 580 assuming the noise adds in quadrature, extract noise due to dcdc converter: cern stv10 Additional noise = 157 yale planar Additional noise = 96 Planar Converter uses the same components except Inductor coil

Thickness of stv = 8 mm vs 3mm for Planar

Shield to Silicon strips are Electrostatics & Eddy current Bottom side shield 2 mm from Planar coil traces Can be mounted on the sensor with 50 μ m Kapton Cooling via sensor

With Planar Converter

Approx <3mm from wire bonds with improved reference @ 0.5fC

- For conducted noise configuration, Planar coil registers zero occupancy(even at 0.5fC)
- Only when close to asics are hits registered,
 3/2 counts at 0.5fC, see above

3-Feb-14	Comparison of Coils for DC-DC Converters							
Yale University								
		CERN	Yale	Yale	Yale	Yale	Yale	
Model		AMIS5MP	9 mm ID	9 mm ID	9 mm ID	6 mm ID	6 mm ID	
		Data Sheet	proto coil	proto coil	estimated	Model 2156	Model 2156a	
coil shape		oval toroid	2 layer spiral					
Total number of turns		29	8	6	6	7	9	
conductor		Cu wire	Cu wire	Cu wire	Cu wire	pcb trace	pcb trace	
equivalent wire gauge		25	22	22	25	28	29	
Coil dimensions	mm	10 x 15	14.5 OD	13 OD	12 OD	14.5 OD	15.5 OD	
thickness	mm	4.00	1.80	1.80	1.20	0.50	0.50	
Inductance	nH	430	836	469	469	487	811	
DC Resistance	mOhms	39	18	13	26	47	83	
Weight grams	Grams	0.537	0.978	0.702	0.360	0.203	0.220	
Length of Wire	mm	370	336	240	240	221.000	307.000	
Power Loss in Coil @ 4 Amps	Watts	0.608	0.288	0.208	0.416	0.752	1.328	
normalized weight		1.00	1.82	1.31	0.67	0.38	0.41	
normalized power loss		1.00	0.47	0.34	0.68	1.24	2.18	
DC DC ripple current in inductor	RMS Amps	0.657	0.340	0.602	0.602	0.580	0.348	
Note: the Inductor ripple current produces the AC magnetic field, which must be shielded from the sensors								

Yale University April 07, 2014

Hand wound coil (Short solenoid) is 24 AWG. Lower DCR for same inductance

Work in Progress

Winding Frame 8 mm x 22 mm Slot in middle to hold wire

AWG 24

g-2 Ribbon 9 mils x 90 mils

5 turns. Inductance = 715 nH DCR = <100 m Ω

Lower Inductance

- 2 turns vs 5 turns
- Higher Ripple current
- Shield distance is higher
- More lost power in shield

Simulations

s. Kalani UCL; UK Atlas Group

We want to understand the efficiency costs of the external shield for the planar coils.

For a given planar coil we would like a plot of the energy loss in the shields as a function of distance from the coil. There should be a shield on each side of the coil placed symmetrically. The inductance of the coil changes as the distance to the shields changes. Since the ripple current is inversely proportional to the inductance this must be included in the calculation.

I expect that the energy loss in the shield will be linearly proportional to the ripple current but we should check this by simulating two different ripple currents for the same configuration.

For each coil configuration we would like to plots, inductance and energy loss over a range of shield distances from 0.5 mm to 10 mm with appropriate step sizes. The energy loss plot should be for 1 amp at the 10 mm spacing, with the current increasing as the inductance decreases. The frequency should be 2 MHz. Use five mill thick copper for the shields.

Start with the standard nine turn two layer coil and see how it goes. After that we will want to try other coil configurations and possibly other shield thickness and material.

May 2012

Semtech SC220: 20 MHz 0.6 Amps: North / South Coils for far Field cancellation DCR becomes a problem

Enpirion EL711: 18 MHz 0.6 Amps

GaN Update

- ✤ 600 Volt is the holy grail
- EPC is the only one delivering Devices thru distribution
- LM5113: driver for eGaN
- IQ2015: Half bridge. (2LM5113 + FETS) in 6 mmx 5mm x 1.5mm. 5 -10 MHz External PWM
- GaN driver on FET Die Several companies. Panasonic Roadmap 2016

Yale University April 15, 2014

Closing Remarks

- 48 V into Detector: 2 Stages
- ✤ IC 2 step: 12 V > 1.2V High efficiency
- GaN: Driver on Die may be Rad Tolerant
- Need lower power loss in detector