DC-DC Converters Using GaN for Collider Physics Detectors

Satish K Dhawan Yale University

http://shaktipower.sites.yale.edu/ satish.dhawan@yale.edu

ECPE SiC & GaN User Forum: Potential of Wide Bandgap Semiconductors in Power Electronic Applications ECPE: European Center for Power Electronics e.V.

1 - 2 September 201, Birmingham, U.K.

Topics Agenda

- CERN: Current Detectors & Powering CMS ECAL detector
- Environment: Magnetic field & Radiation
- ✤ Limits of Silicon
- ✤ Why GaN ?
- ✤ GaN Tests
- Linear Collider Low radiation but needs lower mass powering
- Market Trends
- Summary Keep Environment cool

Large Hadron Collider

- -16 Mile proton-proton collider
- -Tunnel as deep as 100 meters underground
- -Four main experiments: *Atlas*, CMS, LHCB, and Alice

Atlas Detector is underground

Various views of a proton-proton

Overall length

Magnetic field

21.5 m

Tesla

HO: India

CMS Outreach

 Only through industrial contracts

Endcap: Belarus, Bulgaria, China, Colombia,

Korea, Pakistan, Russia, USA

20th Century State of Power Distribution – *LHC Detectors*

ECAL readout system was: designed in ~2000 produced in 2001-2007 commissioned in 2006-2007

FE produces distributed heat low W/sq cm Power Boards High W/sq cm. use heat spreaders

CMS ECAL Super modules

Atlas Detector Consists of Many Sub-Detectors

Power Chain Efficiency for CMS ECAL

It takes 2 watts of power to remove 1 watt of heat load

Power Efficiency _ Inefficiency _ Wasted Power

HV – Low Voltage Converters: Reduce cable delivery losses

- ➢ Power Supply cables 30 − 140 meters
- Point of Load Regulators
- DC-DC Buck Converters
- > Other schemes are not feasible due to constraints
- Radiation, Magnetic Field (Air Core Coils), Switching Noise, Low Mass

```
Collider Detector Power Essential
Sub-Systems operate:
Magnetic Field: ATLAS = 2 T: CMS = 4 T
              : Outside Magnet 0.1 to 1 T at location of power supplies
Radiation Tolerance: Highest for trackers ~ 100 (Strips) Mrads
                                            500 (Pixels) Mrads
                                           ~ 1 Mrad for outer sub systems
Radiation Testing: Test with Gammas – Cobalt 60 Source
Protons 800 MeV
Neutrons 1 MeV (Equivalent) 1 x 10<sup>15</sup> n/cm<sup>2</sup> from research Nuclear Reactors
Heavy lons produced here are low energy & do not penetrate IC lids
Cooling: Chilled Water, Evaporative Cooling – 5C
                     Future Liquid Carbon Dioxide -30C
Minimize Material : Radiation length causes extra (noise) tracks
```


Buck Converter with Air Coil

Magnetic Field Effect

7 Tesla Field Chemistry Department Super Conducting Magnet in Persistence Mode Effect: Vout = 3.545 Outside Vout = 3.546 Edge of magnet Vout = 3.549 Center of magnet Change= Increased Vout 1 part in 900 at 7T

Plug In Card with Shielded Buck Inductor

Different Versions

Converter Chips

Max8654 monolithic IR8341 3 die MCM

✤ Coils

Embedded 3oz cu Solenoid 15 m Ω Spiral Etched 0.25mm

Spiral Coils Resistance in $m\Omega$

	Тор	Bottom
3 Oz PCB	57	46
0.25 mm Cu Foil	19.4	17

MAX8654 with embedded coils (#12), external coils (#17) or Renco Solenoid (#2) Vout=2.5 V

→ MAX #12, Vin = 11.9 V → MAX #17, Vin = 11.8 V → MAX #2, Vin = 12.0 V

Noise Tests with Silicon Sensors

Test @ Liverpool

Plug in Card
1 cm from C
facing Senso
$20 \ \mu m$ Al fo
shielding

	Coil Type	Power	Input Noise electrons rms
Plug in Card cm from Coil	Solenoid	DC - DC	881
acing Sensor	Solenoid	Linear	885
20 μm Al foil shielding	Spiral Coil	DC - DC	666
-	Spiral Coil	Linear	664

21

Ionizing Radiation Results – Commercial Converters

	Company	Device	Oxide Thickness (nm)	Dose before Damage	Observation Damage Mode	
	IHP	ASIC	5	53 Mrad	slight damage	
	XYSemi	MOS FET	7	52 Mrad	Minimal damage	
	XYSemi	XP5062	12.3	44 krad	Loss of output voltage regulation	
Dose rate= 0.2 Mrad/hr	TI	TPS54620	20	23 krad	abrupt failure	
	Intersil	ISL 8502	unknow n	40.6 krad	Increasing input current	
	IR	IR3822	unknown	139 krads	Increasing input current	
5- 12 nm Gate Oxide	IR	IR3841	9 & 25	13 krads	Loss of output voltage regulation	
	ST	ST1510	unknown	125 krad	Loss of output voltage regulation	
	Enpirion	EN5365	5	85 krad	Increasing input current,	
	Enpirion	EN5382	5	111 krads	Loss of output voltage regulation	
	Enpirion	EN5360 #2	5	100 Mrads	No significant Changes	
	Enpirion	EN5360 #3	5	48 Mrads	No significant changes	
	National Semi.	LM2864	11.8	3 Mrads	Short after powe <u>r recyck</u>	

Many more tested but similar failure-Thin oxide converters survive > 200 Krads

Threshold Shift vs Gate Oxide Thickness

Book. Timothy R Oldham "Ionizing Radiation Effects in MOS Oxides" 1999 World Scientific

Can We Have

High Radiation Tolerance & Higher Voltage Together ???

Higher radiation tolerance needs thin oxide while higher voltage needs thicker oxide – Contradiction ?

Mixed signal power designs from TI, TSMC, IBM etc - 0.18 µm & 0.13 µm Automobile Market. Voltage ratings 10 - 80 Volts Deep sub-micron but thick oxide

Controller : Low Voltage

High Voltage: Switches - some candidates HV & Thin oxide

RF Process LDMOS, Drain Extension, Deep Diffusion etc

>> 20 Volts HEMT GaN on Silicon, Silicon Carbide, Sapphire

Frequency Response IR's Engineering sample in 2009 Half Bridge with CMOS Driver

Good efficiency to >12 MHz Driver limited

International Rectifier: Supplied sample board under NDA

Radiation Results – RF GaN & EPC GaN on Si

Fig. 7. Eudyna EGNB010 GaN HEMT, VGS versus IDS at VDS = 10 volts and selected doses of 60Co gamma radiation. Little change is apparent even after 43 Mrad of ionizing radiation.

 V_{GS} (Volts)

Fig. 6. Nitronex 25015 HEMT irradiate with 5×1014 neutrons (1 MeV equivalent). Little change is observed in the response.

-2

TABLE III Radiation Testing Matrix for GaN Devices

-2.5

A EPC Gan on SI Nitronex 25015

5 x 1014 Neutrons/cm2

-1.5

-1

Aircoil EPCOS-B82559A0392A013 3.9 μH / 355 nH without Ferrite. 5 mΩ

Efficiency

Electron Linear Collider produce low radiation

but material in the interaction regions must be minimized

- High Frequency operation for lower coil size / material
- Commercial cell phone converters 6 8 MHz, 1 amp, 5.5 Vin
- ✤ 1 -2 turn coil
- ✤ Fabricate PCB & Test
- Power Supply in a Package
- Coil simulation needs collaborators ??
- Coil may be buried in the detector PCB
- Feasibility report due summer 2012

Market Trend

Working on Physics Power Supply Is not considered Glamorous

Top of the World is Cool but lonely ! Let us keep it cool with highly efficient PS Swimming is Great at the North Pole August 2010 Fairbanks, Alaska was 33 C - Bye Bye Glaciers !

More Details: http://shaktipower.sites.yale.edu Click on Recent seminars/