Power Delivery to Future Physics Detector Front End Electronics with Commercial DC-DC Power Converters

Satish K Dhawan Yale University satish.dhawan@yale.edu

Kyoto, Japan June 10 -11, 2010

Agenda

- How we got into this Power Supply mess
- Type of Converters
- Coil Development
- Proximity Effect
- Plug in cards
- Noise Test with Detectors
- Magnetic Field
- Radiation Effect > Thin Oxide
- Radiation Test Results
- GaN Wide band Gap materials
- Industry Developments
- Did we find a commercial part for sLHC ?
- Market Trends Single Chip
- Conclusions
- Oodle Reduction for Energy Efficiency , Rad Resistant PS & Li Nitrogen Tests

Center for European Nuclear Research (CERN)

-World's Largest Particle Physics Laboratory

- -Located near Geneva, Switzerland on French-Swiss Border
- -Also known for creating the WEB in early 1990s

Main Site

Large Hadron Collider

- -16 Mile proton-proton collider
- -Tunnel as deep as 100 meters underground
- -Four main experiments: *Atlas*, CMS, LHCB, and Alice

CMS Outreach

37 Countries, 155 Institutes, 2000 scientists (including about 400 students) October 2006

TRIGGER, DATA ACQUISITION & OFFLINE COMPUTING

Austria, Brazil, CERN, Finland, France, Greece, Hungary, Ireland, Italy, Korea, Poland, Portugal, Switzerland, UK, USA TRACKER Austria, Belgium, CERN, Finland, France, Germany, Italy, Japan*, Mexico, New Zealand, Switzerland, UK, USA

FEET

China

Pakistan

CRYSTAL ECAL Belarus, CERN, China, Croatia, Cyprus, France, Italy, Japan*, Portugal, Russia, Serbia, Switzerland, UK, USA

FORWARD

CALORIMETER

Hungary, Iran, Russia, Turkey, USA

RETURN YOKE

Barrel: Czech Rep., Estonia, Germany, Greece, Russia Endcap: Japan*, USA

SUPERCONDUCTING MAGNET

All countries in CMS contribute to Magnet financing in particular: Finland, France, Italy, Japan*, Korea, Switzerland, USA

Fotal weight	:	12500 T
Overall diameter	:	15.0 m
Overall length	:	21.5 m
Magnetic field	:	4 Tesla

HCAL Barrel: Bulgaria, India, Spain*, USA Endcap: Belarus, Bulgaria, Georgia, Russia, Ukraine, Uzbekistan HO: India

MUON CHAMBERS

Barrel: Austria, Bulgaria, CERN, China, Germany, Hungary, Italy, Spain, Endcap: Belarus, Bulgaria, China, Colombia, Korea, Pakistan, Russia, USA

 Only through industrial contracts

Atlas Detector Consists of Many Sub-Detectors

Power Chain Efficiency for CMS ECAL

What can we do?

- Is there a better way to distribute power ?
- High Radiation
- Magnetic Field 4 T
- Load ~1 V Oodles of current
- Feed High Voltage and Convert like AC power transmission
- Commercial Technologies No Custom ASIC Chips
- Learn from Semiconductor Industry
- Use Company Evaluation Boards for testing

Found out at Power Technology conference 0.25 µm Lithography

Irradiated Stopped on St. Valentines Day 2007
We reported @ TWEPP 2008 - IHP was foundry for EN5360

Plug In Card with Shielded Buck Inductor

Different Versions

Converter Chips

Max8654 monolithic IR8341 3 die MCM

✤ Coils

Embedded 3oz cu Solenoid 15 m Ω Spiral Etched 0.25mm

Spiral Coils Resistance in $m\Omega$

	Тор	Bottom
3 Oz PCB	57	46
0.25 mm Cu Foil	19.4	17

Noise Tests with Silicon Sensors

Test @ Liverpool				
		Coil Type	Power	Input Noise electrons rms
6 6 6 10	Plug in Card	Solenoid	DC - DC	881
	facing Sensor	Solenoid	Linear	885
	20 µm Al foil	Spiral	DC -	
	shielding	C011	DC	666
		Spiral Coil	Linear	664

Threshold Shift vs Gate Oxide Thickness

Book. Timothy R Oldham "Ionizing Radiation Effects in MOS Oxides" 1999 World Scientific

Can We Have

High Radiation Tolerance & Higher Voltage Together ???

Controller : Low Voltage

High Voltage: Switches -

LDMOS, Drain Extension, Deep Diffusion etc

>> 20 Volts HEMT GaN on Silicon, Silicon Carbide, Sapphire

Thin Oxide Devices (non IBM)

Company	Device	Process	Foundry	Oxide	Dose before	Observation
		Name/ Number	Name	nm	Damage seen	Damage Mode
IHP	ASIC custom	SG25V GOD 12 V	IHP, Germany	5		Minimal Damage
XySemi	FET 2 amps	HVMOS20080720 12 V	China	7		Minimal Damage
XySemi	XP2201	HVMOS20080720 15 V	China	12 / 7		1Q2010
Enpirion	EN5365	CMOS 0.25 µm	Dongbu HiTek, Korea	5	64 Krads	
Enpirion	EN5382	CMOS 0.25 µm	Dongbu HiTek, Korea	5	111 Krads	
Enpirion	EN5360 #2	SG25V (IHP)	IHP, Germany	5	100 Mrads	Minimal Damage
Enpirion	EN5360 #3	SG25V (IHP)	IHP, Germany	5	48 Mrads	Minimal Damage

Necessary condition for Radiation Hardness - Thin Gate Oxide **But not sufficient** IHP: Epi free, High resistivity substrate, Higher voltage, lower noise devices Dongbu: Epi process on substrate, lower voltage due to hot carriers in gate oxide

Gallium Nitride Devices under Tests

International Rectifier GaN on Silicon Under NDA

Gamma: @ BNL Protons: @ Lansce Neutrons: @ U of Mass Lowell

Plan to Expose same device to Gamma, Protons & Neutrons Online Monitoring

200 Mrads of Protons had no effect – switching 20 V 0.1 Amp Parts still activated after 7 months

Some Random Remarks

- Learned from commercial devices, companies & power conferences
- Can get high radiation tolerance & higher voltage simultaneously
- High frequency > smaller air coil > less material
- Goal: ~20 MHz buck, MEM on Chip *size 9 mm x 9mm*
- Power SOC: MEMs air core inductor on chip
- Will study feasibility of 48 / 300V converters
- Irradiations:
 - $_{\circ}$ Important to run @ max operating V & I.
 - Limit power dissipation by switching duty cycle
 - Use online monitoring during irradiation for faster results
- Yale Plug Cards can be loaned for evaluation
- Collaborators are Welcome

Conclusions

- The power distribution needs of HEP detectors require new solutions/technologies to meet power and environmental requirements.
- DC/DC (Buck) Converters are potential solutions for these needs.
- The environment requires that these converters operate in high radiation environments and high magnetic fields at high switching frequencies in a small size/mass package.
- Target technologies for the switches are radiation hard GaN and 0.25 μm LDMOS. High frequency controllers driving small sized nonmagnetic/air core inductors are also required.
- Many of these components have been tested and now need integration to produce a working prototype. This is the next step in our R&D program.

What can be achieved by this Development ?

- Current Reduction from Power Supply by DC-DC near Load Losses > Current² x Resistance
- Silicon ÷10 Current Reduction 5 Oodle > 0.5 Oodle CMOS converters can run @ Li Nitrogen temperature
- GaN ÷ 50 Current Reduction 5 Oodle > 0.1 Oodle Power Converters for Beam Line usage

: epc 1015 – 40V: Efficiency with constant frequency and constant on pulse with inputs of 12, 24 & 36 Volts.

Yale University May 16, 2010

: epc 1001 – 100V: Efficiency with 2 constant frequencies. Inputs of 24, 36 & 48 Volts.

Longer On Time improves efficiency

: epc 9001 & 9002 Comparison: Efficiency with constant 110 KHz.: Vin = 36; Vout= 1.8 V.

Yale University May 16, 2010

Power Delivery to HEP Detectors

- Need Increase in Power Delivery Efficiency for environment & budget
- Energy and Power are high priorities of current (and future) administration
- Power will be critical for next generation of HEP experiments: power bill and physics reach
- Increase emphasis on Power Electronics in US is needed. In Asia it is a Glamorous field. Best and the brightest going into this. Tremendous Economic opportunity
- In US no support for this type of R&D.
 In general, limited support for generic detector R&D.
- This R&D is needed for a viable US HEP program. Do we want or should US give up and transfer all HEP to CERN?
- Office of Science is very supportive of innovative, applied R&D with benefits to society.
- Do you agree? If so, how can you help to reverse this situation?

Supporting Bullets for Power Delivery to HEP Detectors

Early work at Intel central research lab's AIR Core Coils.

Bell labs / Lucent investigators started Enpirion (maker of the commercial chip that happens to be Radiation Hard)

- Radiation Hardness: Silicon LDMOS 15 V Few amps
- Gallium Nitride could be a game changer: 100 Volts, tens of amps. Opportunity for Beam line power supplies
- Gallium Nitride: US companies developing for Power switching market.
- Four years ago I started the field of DC-DC Converters for sLHC SiT. Introduced ideas at BNL & CERN meetings to a about 10 person at each lab. David Lissauer was at both. CERN started to work on it with EU funding.
- Basic ideas: Converters to run in high radiation and magnetic fields.

Satish Dhawan, Yale University April 14, 2010

Supporting Bullets for Power Delivery to HEP Detectors

- ✤ Yale Work: No base support available. Let CERN do it.
- Current Funding @ Yale: NSF/DoE University LCRD: \$47k /year
- ATLAS Si Tracker Phase II has supported. Due to delay . FY11 funding = zero
- ✤ DoE HEP University Generic R&D: \$600K /year. Request enhance base program
- Europe / CERN: With EU funding it is ~25MCHF (total or per year?)
- Balkanization of projects: ATLAS & CMS vertical organization. No room for people working on same thing to work together
- Workshop Presentation are considered confidential & cannot be shared/ examined by the other Group
- Mission Oriented Funding. No room for Generic R&D with long payback
- Fermilab mission is HEP. Support Generic R&D on Power delivery Electronics

Working on Power Supply Is not Glamorous

Top of the World is Cool but lonely ! Let us keep it cool with highly efficient PS Swimming is Great at the North Pole

More Details: www.Yale.edu/FASTCAMAC click on DC-DC

CONVERTERS INSTALLED

CERN - Chamonix 2010 Report

LHC CONVERTERS VS RADIATION [2010]

Rad Tolerant Design *or* standard Design with low Rad sensitivity (safe components)

Standard Design and Rad sensitivity unknown (too many components, sub-assemblies...)

AC - DC Power Efficiency Challenge by IBM September 2007

	FES	IBS	POL	Plug-to- Processor
Recent	93%	95%	88%	78%
Best Immediate	95%	98%	90%	84%
	IE	90%		
Needed	98%	98%	94%	90%

Bodo's Power System April 2010

Aurora 14

