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Center for European Nuclear Research (CERN)

-World’s Largest Particle Physics Laboratory
-Located near Geneva, Switzerland on French-Swiss Border
-Also known for creating the WEB in early 1990s

Main Site




Large Hadron Collider

-16 Mile proton-proton collider

-Tunnel as deep as 100 meters
underground

-Four main experiments: Aflas, CMS,
_ LHCB, and Alice
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CMS Outreach

37 Countries, 155 Institutes, 2000 scientists (including about 400”5tudent5} October 2006
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Aflas Detector Consists of Many Sub-Detectors

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter
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Power Input

Operating Current

. | 4.3 Volt Analog
11 Regulators each with Output 4.3 Volt Digital |
\ Current maximum = 2.5 amps "

Motherboard
for
VFE
Cards

CMS ECAL: Electromagnetic Calorimeter
80 Amps Power supply for 4 LVR Boards
Power Supply @6.3V 30 meters away
3K Boards x 16 amps = 48 Kamps
. Magnetic Field 4T in CMS
{ Power Delivery Efficiency < 40 %
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CMS ECAL: 5 Oodles (50 Kamps) .

Power Supply output =315 KW Power Supply
Power loss in Leads to SM =100 KW 6.3V
Power loss in Regulator Card = 90 KW

P Del d@?25V =125 KW
ower Delivered @ 1 Oodle = 10,000 amps 64 Amps

# of Power Supplies ~ 700
# of ST LDO Chips = 35 K LHC Radiation Hard made by ST Microelectronics 30 m
# of LVR Cards = 3.1 K.

Yale: Designed, built, burn-in and Tested.

SM: Super Module Vdrop = 2V
Pd=128 W
2x16 mm2 (AWG 6)
Junction Box |
Tto3m 50 mm?2 (AWG 00)
/ Power Delivery Efficiency = 40%

NOT INCLUDED
1. Power Supply efficiency

2. Water cooling
4 LVR Boards 3. Removal of Waste heat
4. Air Conditioning




Power Chain Efficiency for CMS ECAL

80 % 100 Km

18 KV

99.5 %
Transformer |4
5-6Km
380V 220V
Transformer 3 Phase UPS 3 Phase
d Batteries v
50-100 m

Represents the efficiency of power delivery
to a physics detector, e.g. ECal

99 %
Power Grid Transformer = Nuclear
600 KV 50 MW N - Generating
300 KM
Plant
99.5 % 75-79 % w
N
230V 385V Wiener
3 Phase ACto DC >
i . o] Maraton
Isolation 7| Rectifier & g Load
Transformer 20m PEC PS
140 m /
Cable 6.3V
Loss =3%

Guess work Efficiency %

Power delivery Efficiency

=30 %

A 4

with Power for Heat Removal

=20 %

A 4
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What can we do?

Is there a better way to distribute power ?
High Radiation

Magnetic Field 4 T

Load ~1 V Oodles of current

Feed High Voltage and Convert - like AC power
transmission

Commercial Technologies — No Custom ASIC Chips
Learn from Semiconductor Industry
Use Company Evaluation Boards for testing



Synchronous Buck Converter

Control Switch

§ Rload

/

Minimum Switch ON Time
Limits Max Frequency

Lower Voltage Ratio
>>>Higher Frequency

& Smaller Coil
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Power Stage Drivers
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Buck Regulator Efficiency after 100 Mrad dosage
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Found out at Power Technology conference 0.25 ym Lithography
« Irradiated Stopped on St. Valentines Day 2007
- We reported @ TWEPP 2008 - IHP was foundry for EN5360




Synchronous Buck Converter

Control Switch
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Plug In Card with Shielded Buck Inductor

Coupled Air Core Inductor
Connected in Series

12 V 25V

@ 6 amps

1

Spiral Coils Resistance in mQ

Different Versions

+»» Converter Chips

Max8654 monolithic
IR8341 3 die MCM 30z PCB 57 46

+» Coils 0.25 mm Cu

Embedded 30z cu Foil 194 17

Solenoid 15 mQ
Spiral Etched 0.25mm

Top Bottom




Only One Chip Bonded

Noise Tests with Silicon Sensors

Test @ BNL

Output Noise Comparison {Detector Bias Voltage = 31V, 1mV ~ 125e)
i

Radiated Noise - pepbwdondiialll
NO Conducted NOISe ‘ 3.3V DC-DC Convertor without Smadmg|
; L
5

n 'y 'l'
o | S i sl
; . B = -
0 200 400 800 1000
Channel
Test @ Liverpool
Coil Input Noise
Type Power electrons rms
Plug in Card DC -
1 cm from Coil Solenoid DC 881
| facing Sensor Solenoid | Linear 885
shielding Coil DC 666
Spiral
Coil Linear 664
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Threshold Shift vs Gate Oxide Thickness

Poly- Si
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Can We Have
High Radiation Tolerance & Higher Voltage Together ???

Controller : Low Voltage
High Voltage: Switches —
LDMOS, Drain Extension, Deep Diffusion etc

>> 20 Volts HEMT GaN on Silicon, Silicon Carbide, Sapphire




IHP NMOS Transistor IHP PMOS Transistor
a5 Vg versus I, at Selected Gamma Doses VG versus ID at selected Gamma Doses
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Thin Oxide Devices (non IBM)

Company Device Process Foundry Oxide | Dose before | Observation
Name/ Number Name nm Damage seen Damage Mode

IHP ASIC custom |SG25v GoD 12 V IHP, Germany 5 Minimal Damage

XySemi  |FET2amps |HVM0S20080720 12 V |china 7 Minimal Damage

XySemi | XP2201 HVMO0S20080720 15 V |china 1217 1Q2010

Enpirion EN5365 CMOS 0.25 uym Dongbu HiTek, Korea 5 64 Krads

Enpirion ENS5382 CMOS 0.25 ym Dongbu HiTek, Korea 5 111 Krads

Enpirion ENS360 #2 SG25V (IHP) IHP, Germany 5 100 Mrads Minimal Damage

Enpirion ENS5360 #3 SG25V (IHP) IHP, Germany 5 48 Mrads Minimal Damage

Necessary condition for Radiation Hardness - [ hin Gate Oxide
But not sufficient
IHP: Epi free, High resistivity substrate, Higher voltage, lower noise devices
Dongbu: Epi process on substrate, lower voltage due to hot carriers in gate oxide




Gallium Nitride Devices under Tests

RF GaN 20 Volts & 0.1 amp

% 8 pieces: Nitronex NPT 25015: GaN on Silicon
v Done Gamma, Proton & Neutrons

v 65 volts Oct 2009

s 2 pieces: CREE CGH40010F: GaN on siC

¢ 6 pieces: Eudyna EGNBO10MK: GaN on siC
v" Done Neutrons

Switch GaN
¢ International Rectifier GaN on Silicon
Under NDA

Gamma: @ BNL

Protons: @ Lansce Plan to Expose same device to
Neutrons: @ U of Mass Lowell Gar_nma, Pr_oto_ns & Neutrons
Online Monitoring




Nitronex 25015

Serial #1
Vds= 65V
0.12
0.1 /

a 0.08 4.2 Mrad
£ /
< 0.06
Q

/ O rad
0.04 / 17.4 Mrad
0.02 /
,,/ Gammas

-2.5 -2.3 -2.1 -1.9 -1.7 -15 -1.3 yvGs Volts

0

200 Mrads of Protons had no effect — switching 20 V 0.1 Amp
Parts still activated after 7 months




Some Random Remarks
* Learned from commercial devices, companies & power
conferences

* Can get high radiation tolerance & higher voltage simultaneously
* High frequency > smaller air coil > less material
* Goal: ¥20 MHz buck, MEM on Chip size 9 mm x 9mm
* Power SOC: MEMs air core inductor on chip
* Will study feasibility of 48 / 300V converters
* Irradiations:

o Important to run @ max operatingV & I.

o Limit power dissipation by switching duty cycle

o Use online monitoring during irradiation for faster results

* Yale Plug Cards can be loaned for evaluation
* Collaborators are Welcome




Conclusions

» The power distribution needs of HEP detectors require
new solutions/technologies to meet power and
environmental requirements.

* DC/DC (Buck) Converters are potential solutions for these
needs.

* The environment requires that these converters operate
in high radiation environments and high magnetic fields at
high switching frequencies in a small size/mass package.

 Target technologies for the switches are radiation hard
GaN and 0.25 um LDMOS. High frequency controllers
driving small sized nonmagnetic/air core inductors are
also required.

* Many of these components have been tested and now
need integration to produce a working prototype. This is
the next step in our R&D program.



What can be achieved by this Development ?

*» Current Reduction from Power Supply by DC-DC near Load
Losses > Current? x Resistance

¢ Silicon +10 Current Reduction 5 Oodle > 0.5 Oodle
CMOS converters can run @ Li Nitrogen temperature

 GaN + 50 Current Reduction 5 Oodle > 0.1 Oodle
Power Converters for Beam Line usage

i ) A grain of Basmati Rice
0 L 4 watts

Thermal Challenge

GaN FETs :
40V 33 A 4mQ FET Solder side




. epc 1015 — 40V: Efficiency with constant frequency and constant on pulse with inputs of 12, 24 & 36 Volts.

E fficiency (%)

EPC9001 #2 Efficiency vs Output Current
Constant Frequency =566 KHz: Pulse width =124 - 240 ns:
Vout =0.95-1.34V: L=3.9 yH, 4.8 mQ
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100

E fficiency (%)

D
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40

EPC9001 #2 Efficiency vs Output Current
Constant twd =240 ns: Frequency =164 - 568 kHz
Vout~1.2V: L=3.9pH, 4.8 mQ

//‘/*\ﬂ_H\‘\A\«

4 6 8
Output Current (A)

—— 12V Input Voltage —=—24V Input Voltage

36V Input Voltage

Yale University
May 16, 2010
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epc 1001 — 100V: Efficiency with 2 constant frequencies. Inputs of 24, 36 & 48 Volts.

EPC9002 #1 Efficiency vs Output Current
Constant Frequency =496 kHz: Pulse width =100 -173 ns:
Vout=1.2015-1.857.V: L=3.9 yH: R=4.8 mQ

0 1 2 3 4 5 6
Output Current (A)

—o—\Vin =24V —=—Vin = 36V Vin = 48V ‘

Efficiency (%)

EPC9002 #1 Efficiency vs Output Current
Constant Frequency =266 kHz: Pulse width =166 - 358 ns:
Vout =1.7984 -1.8144.V: L =3.9 pH: R=4.8 mQ

90.00
80.00
70.00
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50.00
40.00
30.00
20.00
10.00

0.00

0 1 2 3 4 5 6 7 8 9
Output Current (A)

‘—Q—Vin =24V —s—Vin = 36V Vin = 48V ‘

Longer On Time improves efficiency

Yale University
May 16, 2010




epc 9001 & 9002 Comparison: Efficiency with constant 110 KHz.: Vin = 36; Vout=1.8 V.

EPC9001 #2 & EPC9002 #1 Comparison
Efficiency vs Output Current,
Constant twd = 500 ns: Vin = 36: Vout ~1.8V:
Frequency =110-121 kHz: L = 3.9 pH: R= 4.8 mQ
100.00
95.00
g
> 90.00
s
£ 85.00
1]
80.00
75.00
0 1 2 3 4 5 6 7 8 9
Output Current (A)
—e—EPC9001 #2 —=— EPC9002 #1

Yale University
May 16, 2010
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Power Delivery to HEP Detectors

* Need Increase in Power Delivery Efficiency for environment & budget
s+ Energy and Power are high priorities of current (and future) administration

s Power will be critical for next generation of HEP experiments: power bill and
physics reach

* Increase emphasis on Power Electronics in US is needed. In Asia it is a
Glamorous field. Best and the brightest going into this.
Tremendous Economic opportunity

¢ In US no support for this type of R&D.
In general, limited support for generic detector R&D.

% This R&D is needed for a viable US HEP program.
Do we want or should US give up and transfer all HEP to CERN?

s Office of Science is very supportive of innovative, applied R&D with benefits to
society.

¢ Do you agree? If so, how can you help to reverse this situation?

30

Satish Dhawan, Yale University
April 14, 2010



Supporting Bullets for Power Delivery to HEP Detectors

+» Early work at Intel central research lab’s AIR Core Coils.

+» Bell labs / Lucent investigators started Enpirion (maker of the commercial chip that happens to
be Radiation Hard)

+ Radiation Hardness: Silicon LDMOS 15 V Few amps

+»+Gallium Nitride could be a game changer: 100 Volts, tens of amps. Opportunity
for Beam line power supplies

+ Gallium Nitride: US companies developing for Power switching market.

ssFour years ago | started the field of DC-DC Converters for sLHC SiT. Introduced
ideas at BNL & CERN meetings to a about 10 person at each lab. David
Lissauer was at both. CERN started to work on it with EU funding.

+» Basic ideas: Converters to run in high radiation and magnetic fields.

A grain of Basmati Rice
4 watts

GaN FETs
Satish Dhawan, Yale University 40V 33 A 4mQ FET Solder side 31

April 14, 2010




Supporting Bullets for Power Delivery to HEP Detectors

+ Yale Work: No base support available. Let CERN do it.
% Current Funding @ Yale: NSF/DoE University LCRD: $47k /year

s ATLAS Si Tracker Phase Il has supported.
Due to delay . FY11 funding = zero

% DoE HEP University Generic R&D: $600K /year. Request enhance base program
s Europe / CERN: With EU funding it is ~25MCHF (total or per year?)

+» Balkanization of projects: ATLAS & CMS vertical organization.
No room for people working on same thing to work together

s Workshop Presentation are considered confidential & cannot be shared/
examined by the other Group

s Mission Oriented Funding. No room for Generic R&D with long payback

s Fermilab mission is HEP. Support Generic R&D on Power delivery Electronics

32
Satish Dhawan, Yale University

April 14, 2010
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http://www.yale.edu/FASTCAMAC

CERN - Chamonix 2010 Report
= LHC CONVERTERS VS RADIATION [2010]

Rad Tolerant Design or standard Design with low Rad sensitivity (safe components)
B Standard Design and Rad sensitivity unknown (too many components, sub-assembilies...)

T TR T M
) B RRIx:36  UJix: 10
LHC120A-10V  [gEk] LHC120A-10V 107 riveo e
q [T (298))) q 7 ] 2pccTs RR7x: 20
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RR1x 28  UJix: 16
RRY{X: UJ56: 08
2 DCCTs AN

012 uJ76:12

S
(HTA SKkATO8V 066 RR1x:30 UJix: 04 )
[~ | 2DcCTs | RRSx:30  UJS6:02 )

I E 60 A @ 8V 752 units
LHC13kA-180V Tunnel Under Dipole
[

20/10/2010 Thurel Yves | 34 of 22




AC - DC Power Efficiency Challenge
by IBM September 2007

Front End Intermediate Bus Point of Load

Supply Supply (POL)
(FES) (1BS) Supply

240 Vac
ac-dc

400 Vdc

93% 95% 88%
95% 98% 90% 84%
IBM Challenge 90%
Needed 98% 98% 94% 90%

Bodo’s Power System April 2010
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