Power Converters with
GaN HEMT (High Electron Mobility Transistor) FETs

Satish K Dhawan
Yale University

July 14, 2010
Materials Journey Se .. Ge…Si…GaN
Why Gallium Nitride. Better FOM = $R_{DS(ON)} \times Q_G$
Enable new Capabilities ?
High Electron Mobility
High Frequency – 10 GHz
X10 higher dielectric strength
Higher Thermal Conductivity
Majority Carrier Device – No reverse recovery
Cost ?
Is it easy to use? Learning curve
End of the Silicon near?
DC-DC Converters 48V- 1V, 400V- 48V Radiation ?
Development 600V,1200,5000V
LHC CONVERTERS VS RADIATION [2010]

- Rad Tolerant Design or standard Design with low Rad sensitivity (safe components)
- Standard Design and Rad sensitivity unknown (too many components, sub-assemblies...)

LHC120A-10V
- FGC: 1
- 2 DCCTs: 191

LHC600A-10V
- FGC: 1
- 2 DCCTs: 272

LHC600A-40V
- FGC: 1
- 2 DCCTs: 25

LHC4..8kA-08V
- FGC: 1
- 2 DCCTs: 066

LHC13kA-18V
- FGC: 1
- 2 DCCTs: 16

LHC13kA-180V
- FGC: 1
- 2 DCCTs: 8

LHC60A-08V
- FGC: 1
- 2 DCCTs: 752

Radiation Risk

60 A @ 8 V 752 units

Is it possible to do this Power Train in GaN? Investigate??
First commercial GaN devices for Power Switching (DC-DC Converters)

Tests done using EPC (Efficient Power Conversion Corp, El Segundo, CA) Demo Boards

Plot conversion efficiency vs output current
 40V Devices: Input 12 / 24 /36 Volts Output ~ 1.2V
 100V Devices: Input 24 /36 /48 Volts Output ~ 1.2 -1.8V

Radiations Tests Schedule

- BNL: Gammas July 28, 2010
- TRIUMF (Organized by Sandia National Laboratories): Protons September 13-17, 2010

Satish Dhawan, Yale University
July 09, 2010
New GaN Devices for Power Switching

Converter Efficiency Inputs = 12, 24 & 36 volts
output ~ 1.2 V

EPC9001 #2 Efficiency vs Output Current
Constant Frequency = 566 KHz: Pulse width = 124 - 240 ns:
Vout = 0.95 - 1.34V: L = 3.9 µH, 4.8 mΩ

EPC9001 #2 Efficiency vs Output Current
Constant twd = 240 ns: Frequency = 164 - 568 kHz
Vout ~ 1.2V: L = 3.9 µH, 4.8 mΩ
Converter Efficiency Inputs = 24, 36 & 48 volts
output ~ 1.8 v

Longer On Time improves efficiency (Lower Frequency)
Yale University
May 16, 2010

Set up with Resistor Load (Alternate is Active Load)
Figure 8: GaN on silicon can be used as a “flip chip”. The active device is isolated from the silicon substrate and can be completely encapsulated prior to singulation.

Figure 1: GaN on silicon devices have a very simple structure similar to a lateral DMOS device and can be built in a standard CMOS foundry.
Device Construction

![Diagram of device construction](image)
Flip Chip Assembly
Status of GaN player

<table>
<thead>
<tr>
<th>Company</th>
<th>Detail of Target or status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fujitsu Laboratory</td>
<td>Mass-production level in 2011(fiscal)~2012 in the medium Vb over 600V using Si or SiC substrate (representative by Fujitsu Micro-elect.)</td>
</tr>
<tr>
<td>Furukawa and Fuji Electric</td>
<td>Commercial use at 2011(fiscal)</td>
</tr>
<tr>
<td>International Rectifiers</td>
<td>Commercial use from 2010
Beginning of product is lower Vb such several tens of voltage</td>
</tr>
<tr>
<td>NEC (Renesus)</td>
<td>Deliver Sample at 2011(fiscal)</td>
</tr>
<tr>
<td>Panasonic</td>
<td>Commercial use at 2011(fiscal)</td>
</tr>
<tr>
<td>Rohm</td>
<td>Deliver Sample at 2011(fiscal), also developing GaN native substrate</td>
</tr>
<tr>
<td>Sanken Electric</td>
<td>Trial manufacture of Vb over 800 V</td>
</tr>
</tbody>
</table>

Timeline

2006 2007 2008 2009 2010 2011 2012

- Velox (Developing SBD with STMicro)
- IR (Announcement of establish 6in-line)
- EPC announced GaN devices on Si
- Fujitsu (At DRC2009, massproduction at 2011 using 6in-line)
- NEC (paper at IEDM2009)
- Advanced power device research association (Furukawa & Fuji)
- Sanken-electric or Panasonic have been developing the GaN devices going to massproduction at 2012

Prepared by Dr. Nariaki Ikeda of Advanced Power Device Research Association for Yale University
Satish Dhawan, Yale University

July 28, 2009

FET Setup for Proton Radiation Exposure
200 Mrads of Protons had no effect – switching 20 V 0.1 Amp
Parts still activated after 7 months
Proton Test

Proton Fluence = 1×10^{15}p/cm² over a period of about 24 hours.

Biased = 65 volts switching @ 1MHz

Average current = 65 mA limited by Load resistor. No change in current.

Our next IEEE TNS Paper shall summarize work to date.
EPC 9001 Demo Board Connections for Rad Testing

Satish Dhawan
Yale University
May 26, 2010

Brandon: Your connections ???

50 Ω Cable 20 feet?

5 V Drive see slide 36

1 Ω Shunt to 36 V power supply see slide 36

50 Ω Cable 20 feet?