Testing of Cables for KPiX Pulse Load

Satish K. Dhawan
Yale University

ALCPG, University of Oregon, OR

 19-23 March , 2011
Power Topics

> Voltage Kick / Overshoot @ turn off
$>$ ICs Operating $=2.5 \mathrm{~V}$ Max Operating $=2.75 \mathrm{~V}$ Abs $\max =3 \mathrm{~V}$ Life tests
> Power Efficiency / Inefficiency / wasted Power
$>$ Cable Tests. No KPiX Chip current
>DC-DC Converter with Air Core Coil
$>$ Radiation Tolerance Why Thin Oxides ?

CMS ECAL: 5 Oodles (50 Kamps) .

```
Power Supply output = 315 KW
Power loss in Leads to SM = 100 KW
Power loss in Regulator Card = 90 KW
Power Delivered @ 2.5 V = 125 KW
```

1 Oodle $=10,000 \mathrm{amps}$
\# of Power Supplies ~ 700
\# of ST LDO Chips $=35 \mathrm{~K}$ LHC Radiation Hard made by ST Microelectronics
\# of LVR Cards = 3.1 K .
Yale: Designed, built, burn-in and Tested.

Power Efficiency _ Inefficiency _ Wasted Power

Why use DC-DC for Pulse powering?

ALPHA-Core Interconnect Pairs

"Analogue-like dynamics from CD, seamless top-to-bottom smoothness, 3D imaging, dead silent background..."

Stereo Pairs shock	$\begin{gathered} .5 \mathrm{~m} \\ 1.6 \mathrm{ft} \end{gathered}$	$\begin{aligned} & 1 \mathrm{~m} \\ & 3.3 \mathrm{ft} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~m} \\ & 4.9 \mathrm{ft} \end{aligned}$	$\begin{gathered} 2 \mathrm{~m} \\ 6.5 \mathrm{ft} \end{gathered}$	$\begin{aligned} & 2.5 \mathrm{~m} \\ & 8.1 \mathrm{ft} \end{aligned}$	$\begin{gathered} 3 \mathrm{~m} \\ 9.7 \mathrm{ft} \end{gathered}$	$\begin{gathered} 4 \mathrm{~m} \\ 13.1 \mathrm{ft} \end{gathered}$	$\begin{gathered} 5 \mathrm{~m} \\ 16.4 \mathrm{ft} \end{gathered}$	$\begin{gathered} 6 \mathrm{~m} \\ 19.7 \mathrm{ft} \end{gathered}$	$\begin{gathered} 7 \mathrm{~m} \\ 23 \mathrm{ft} \\ \hline \end{gathered}$	$\begin{gathered} 8 \mathrm{~m} \\ 26.2 \mathrm{ft} \\ \hline \end{gathered}$	$\begin{gathered} 9 \mathrm{~m} \\ 29.5 \mathrm{ft} \\ \hline \end{gathered}$	$\begin{gathered} 10 \mathrm{~m} \\ 32.8 \mathrm{ft} \\ \hline \end{gathered}$
(COPPER INTERCONNECT (Micro Purl-25 awg, TQ2 Copper-21awgTourmaline - 18awg)													
3×80 Micro Purl Cu RCA 7 cond	-1 ${ }^{\text {S }}$	(\$101)	\$121	\$157	\$194	\$216	\$255	\$334	\$413	\$470	\$549	\$628	\$708
Micro Purl Cu XLR	-1.2 \$97	\$133	\$166	\$201	\$243	\$269	\$318	\$405	\$502	\$550	\$664	\$943	\$1,077
Triode Quartz TQ2/Cu RCA	\$100	(\$148)	\$190	\$234	\$280	\$324	\$381	\$444	\$539	\$632	\$702	\$797	\$893
Triode Quartz TQ2/Cu XLR	\$142	\$195	\$242	\$292	\$342	\$393	\$460	\$534	\$640	\$735	\$872	\$1,207	\$1,367
Fl $\quad \rightarrow$ Tourmaline RCA $2 \sim \ldots$	\$120	\$178 ${ }^{\text {- }}$	\$228	\$280	\$336	\$388	\$457 $\$ 552$	\$533	\$647	\$759 $\$ 882$	$\$ 843$ $\$ 1,046$	$\$ 956$ $\$ 1.448$	$\$ 1,071$
$5 \mathrm{c}_{2} 0^{\circ}$ Tourmaline XLR 3 "	\$170	\$ $\$ 234$	\$291	\$351	\$410	\$471	\$552	\$640	\$768	\$882	\$1,046	\$1,448	$\$ 1,640$
	SILVER INTERCONNECT (Micro Purl - 25 awg, TQ2 - 21awg, Sapphire - 18awg)												
Mico Purl Ag RCA	\$111	\$165	\$198	\$256	\$316	\$351	\$416	\$545	\$673	\$766	\$894	\$1,023	\$1,153
Micro Purl Ag XLR	\$157	\$217	\$270	\$328	\$397	\$438	\$517	\$660	\$818	\$896	\$1,082	\$1,537	\$1,754
Triode Quartz TQ2/Ag RCA	\$163	\$242	\$309	\$381	\$456	\$527	\$621	\$724	\$878	\$1,030	\$1,143	\$1,298	\$1,454
Triode Quartz TQ2/Ag XLR	\$231	\$318	\$395	\$476	\$557	\$640	\$749	\$869	\$1,042	\$1,197	\$1,420	\$1,966	\$2,226
Sapphire RCA	\$250	\$443	\$633	\$805	\$848	\$891	\$1,188	\$1,489	\$1,599	\$1,797	\$2,053	\$2,308	\$2,566
Sapphire XLR	\$333	\$566	\$793	\$1,000	\$1,040	\$1,123	\$1,453	\$1,742	\$2,032	\$2,214	\$2,490	\$2,800	\$3,111

Cable Parameters

Cable Type	\# of	Cross Section	\mathbf{C}	\mathbf{L}	\mathbf{R} Ohms	$\mathbf{D C R}$	\mathbf{Z}	Reflection	Label
Length = 2 meters	Conductors	mils	$\mathbf{p F}$	$\mathbf{n H}$	$\mathbf{1 ~ M H z}$	$\mathbf{O h m s}$	Ohms	Peak V	
Twisted Pair	2	AWG 22	95.6	1100	0.734	0.197	130	27	
Micro Strip	2	5×250	1440	168	0.171	0.105	10.8	10	E
Strip Line	3	5×250	4930	103	0.092	0.066	4.6	7.4	H
Strip Line -Twisted	3	5×125	2520	154	0.195	0.142	7.8	9	F
Strip Line -Twisted	3	3×80	2353	177	0.544	0.420	8.7	8.8	G

All Cables 2 meter long.
HP 4284A Precision LCR Meter $20 \mathrm{~Hz}-1 \mathrm{MHz}$. Test Fixture 16047C

Plug In Card with Shielded Buck Inductor

Threshold shift in MOS transistors with Radiation vs Oxide Thickness

Radiation Tolerance of CMOS Devices

Company	Device	Process	Foundry	Oxide	Dose before	Observation
		Name/ Number	Name	nm	Damage seen	Damage Mode
IHP	ASIC custom	SG25V GOD 12 V	IHP, Germany	5	53 MRads	Minimal Damage
XySemi	FET 2 A	HVMOS20080720 12	Vhina	7	52 Mrads	Minimal Damage
XySemi	XP5062	HVMOS20080720	China	12	44 Krads	Loss of output regulation
Enpirion	EN5365	CMOS $0.25 \mu \mathrm{~m}$	Dongbu HiTek, Korea	5	64 Krads	Increasing input current
Enpirion	EN5382	CMOS 0.25 $\mu \mathrm{m}$	Dongbu HiTek, Korea	5	111 Krads	Loss of output regulation
Enpirion	EN5360	SG25V (IHP)	lHP, Germany	5	100 Mrads	Minimal Damage

Table I. Radiation Tolerance of Devices with thin oxide

Next

Measure KPiX turn off spikes

* Movement of Pulsed Current Conductors in 7T

Suggestions are welcome

* Test new commercial converters oxides < 15 nm

More Information

http://shaktipower.sites.yale.edu/

